Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
drug_cos.csv
, health_cos.csv
in to R and assign to the variables drug_cos
and health_cos
, respectivelydrug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
glimpse
to get a glimpse of the datadrug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "Z...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Z...
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "N...
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0....
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0....
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0....
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0....
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0....
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 20...
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZT...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zo...
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 478500000...
$ gp <dbl> 2581000000, 2773000000, 2892000000, 306800000...
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3...
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3...
$ assets <dbl> 5711000000, 6262000000, 6558000000, 658800000...
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 525100000...
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635...
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 201...
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "...
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order): ticker
, year
, grossmargin
Extract observations for 2018
Assign output to drug_subset
For health_cos
select (in this order): ticker
, year
, revenue
, gp
, industry
Extract observations for 2018
Assign output to health_subset
drug_subset
join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - ~
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - ~
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - ~
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - ~
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - ~
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - ~
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - ~
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - ~
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - ~
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - ~
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - ~
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - ~
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - ~
Start with drug_cos
Extract observations for the ticker MRK from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset <- drug_cos %>%
filter(ticker == "MRK")
drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 1 more variable: year <dbl>
Use left_join to combine the rows and columns of drug_cos_subset
with the columns of health_cos
Assign the output to combo_df
combo_df <- drug_cos_subset %>%
left_join(health_cos)
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc~ New Jer~ 0.305 0.649 0.131 0.15 0.114
2 MRK Merc~ New Jer~ 0.33 0.652 0.13 0.182 0.113
3 MRK Merc~ New Jer~ 0.282 0.615 0.1 0.123 0.089
4 MRK Merc~ New Jer~ 0.567 0.603 0.282 0.409 0.248
5 MRK Merc~ New Jer~ 0.298 0.622 0.112 0.136 0.096
6 MRK Merc~ New Jer~ 0.254 0.648 0.098 0.117 0.092
7 MRK Merc~ New Jer~ 0.278 0.678 0.06 0.162 0.063
8 MRK Merc~ New Jer~ 0.313 0.681 0.147 0.206 0.199
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
ticker
, name
, location
and industry
are the same for all the observationsco_name
co_location
co_industry
groupPut the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company r/co_name/ is located in r/co_location/ and is a member of the r/co_industry/ industry group.
Start with combo_df
Select variables (in this order): year
, grossmargin
, netmargin
, revenue
, gp
, netincome
Assign the output to combo_df_subset
combo_df_subset <- combo_df %>%
select(year, grossmargin, netmargin,
revenue, gp, netincome)
combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
Create the variable grossmargin_check
to compare with the variable grossmargin
. They should be equal. grossmargin_check
= gp
/ revenue
Create the variable close_enough
to check that the absolute value of the difference between grossmargin_check
and grossmargin
is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 4.80e10 3.12e10 6.27e 9
2 2012 0.652 0.13 4.73e10 3.08e10 6.17e 9
3 2013 0.615 0.1 4.40e10 2.71e10 4.40e 9
4 2014 0.603 0.282 4.22e10 2.55e10 1.19e10
5 2015 0.622 0.112 3.95e10 2.46e10 4.44e 9
6 2016 0.648 0.098 3.98e10 2.58e10 3.92e 9
7 2017 0.678 0.06 4.01e10 2.72e10 2.39e 9
8 2018 0.681 0.147 4.23e10 2.88e10 6.22e 9
# ... with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check
to compare with the variable netmargin
. They should be equal.
Create the variable close_enough
to check that the absolute value of the difference between netmargin_check
and netmargin
is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 4.80e10 3.12e10 6.27e 9
2 2012 0.652 0.13 4.73e10 3.08e10 6.17e 9
3 2013 0.615 0.1 4.40e10 2.71e10 4.40e 9
4 2014 0.603 0.282 4.22e10 2.55e10 1.19e10
5 2015 0.622 0.112 3.95e10 2.46e10 4.44e 9
6 2016 0.648 0.098 3.98e10 2.58e10 3.92e 9
7 2017 0.678 0.06 4.01e10 2.72e10 2.39e 9
8 2018 0.681 0.147 4.23e10 2.88e10 6.22e 9
# ... with 2 more variables: netmargin_check <dbl>,
# close_enough <lgl>
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos
data
For each industry calculate
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 x 5
industry mean_netmargin_~ median_netmargi~ min_netmargin_p~
* <chr> <dbl> <dbl> <dbl>
1 Biotech~ -4.66 7.62 -197.
2 Diagnos~ 13.1 12.3 0.399
3 Drug Ma~ 19.4 19.5 -34.9
4 Drug Ma~ 5.88 9.01 -76.0
5 Healthc~ 3.28 3.37 -0.305
6 Medical~ 6.10 6.46 1.40
7 Medical~ 12.4 14.3 -56.1
8 Medical~ 1.70 1.03 -0.102
9 Medical~ 12.3 14.0 -47.1
# ... with 1 more variable: max_netmargin_percent <dbl>
Fill in the blanks
Use the health_cos
data
Extract observations for the ticker ZTS from health_cos
and assign to the variable `health_cos_subset
health_cos_subset <- health_cos %>%
filter(ticker == "ZTS")
health_cos_subset
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet~ 4.23e9 2.58e9 4.27e8 2.45e8 5.71e 9 1975000000
2 ZTS Zoet~ 4.34e9 2.77e9 4.09e8 4.36e8 6.26e 9 2221000000
3 ZTS Zoet~ 4.56e9 2.89e9 3.99e8 5.04e8 6.56e 9 5596000000
4 ZTS Zoet~ 4.78e9 3.07e9 3.96e8 5.83e8 6.59e 9 5251000000
5 ZTS Zoet~ 4.76e9 3.03e9 3.64e8 3.39e8 7.91e 9 6822000000
6 ZTS Zoet~ 4.89e9 3.22e9 3.76e8 8.21e8 7.65e 9 6150000000
7 ZTS Zoet~ 5.31e9 3.53e9 3.82e8 8.64e8 8.59e 9 6800000000
8 ZTS Zoet~ 5.82e9 3.91e9 4.32e8 1.43e9 1.08e10 8592000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
?distinct
. Go to the help pane to see what distinct
does?pull
. Go to the help pane to see what pull
doesRun the code below
co_name
You can take output from your code and include it in your text.
In following chuck
co_industry
This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Zoetis Inc is a member of the Drug Manufacturers - Specialty & Generic group.
df
glimpse
to glimpse the data for the plotsdf %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "D...
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.0685187...
ggplot
to initialize the chart data is df
industry
is mapped to the x-axis
med_rnd_rev
med_rnd_rev
is mapped to the y-axisgeom_col
scale_y_continuous
to label the y-axis with percentcoord_flip()
to flip the coordinateslabs
to add title, subtitle and remove x and y-axestheme_ipsum()
from the hrbrthemes package to improve the themeggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-03-16-joining-data"))
df
arrange
to reorder med_rnd_rev
e_charts
to initialize a chart
industry
is mapped to the x-axise_bar
with the values of med_rnd_rev
e_flip_coords()
to flip the coordinatese_title
to add the title and the subtitlee_legend
to remove the legendse_x_axis
to change format of labels on x-axis to percente_y_axis
to remove labels on y-axis-e_theme
to change the theme. Find more themes heredf %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")